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Abstract—Reconfigurable intelligent surfaces (RISs) have
drawn significant attention due to their capability of controlling
the radio environment and improving the system performance.
In this paper, we study the performance of an RIS-assisted
single-input single-output system over Rayleigh fading channels.
Differently from previous works that assume a constant reflection
amplitude, we consider a model that accounts for the intertwine-
ment between the amplitude and phase response, and derive
closed-form expressions for the outage probability and ergodic
capacity. Moreover, we obtain simplified expressions under the
assumption of large number of reflecting elements and provide
tight upper and lower bounds for the ergodic capacity. Finally, the
analytical results are verified by using Monte Carlo simulations.

Index Terms—Reconfigurable intelligent surface, practical
phase shift and amplitude response, performance analysis.

I. INTRODUCTION

A reconfigurable intelligent surface (RIS) is an artificial
planar structure with integrated electronic circuits, which is e-
quipped with a large number of passive and low-cost scattering
elements that can effectively control the wireless propagation
environment. By intelligently adapting the phase shifts and
the amplitude response of the scattering elements of an RIS,
the signals reflected from it can be added constructively or
destructively with other signals so as to enhance the signal
strength or to suppress the co-channel interference at the re-
ceiver [1]-[7]. Thanks to these properties, RISs are considered
to be a promising candidate technology for future wireless
communication systems.

Several works have investigated the performance of RIS-
assisted wireless systems [8]—[22]. In [8], the authors studied
the coverage, the delay outage rate, and the probability of
signal-to-noise-ratio (SNR) gain of an RIS-assisted commu-
nication system over a Rayleigh fading channel by using the
central limit theorem (CLT). In [9], exact and accurate approx-
imated expressions for the bit error rate (BER) were derived
over a Nakagami-m fading channel. In [10] and [11], the
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authors studied the ergodic capacity (EC) of an RIS-assisted
communication system. In [10], in particular, the impact of
phase errors was analyzed. In [12], the outage probability
(OP) was computed and minimized by optimizing the phase
shifts of an RIS over Rician fading channels. In [13], an RIS
was considered for assisting the communication between two
users and the OP and spectral efficiency were studied by using
a Gamma approximation over Rayleigh fading channels. In
[14], exact expressions of the OP and EC for an RIS-assisted
system over Fox’s H fading channels were provided. In [15],
the authors analyzed the impact of phase noise on the BER
over Rayleigh fading channels. In [16], the authors quantified
the impact of discrete phase shifts on the achievable rate
over Rician fading channels. In [17], the authors analyzed the
impact of phase noise and hardware impairments for transmis-
sion over line-of-sight (LOS) channels. In [18], the authors
studied the impact of discrete phase shifts for achieving the
full diversity order over Rayleigh fading channels. In [19],
the authors investigated the ergodic secrecy capacity in the
presence of discrete phase shifts and phase noise. In [20],
the authors studied the secrecy outage probability of an RIS-
assisted communication system over Rayleigh fading channels.
In [21], the authors introduced a tight approximation for the
distribution of the SNR in RIS-assisted communications that
is formulated in terms of the squared K¢ distribution. In
[22], the authors proposed a general framework to calculate
the distribution of the SNR in multiple-antenna RIS-assisted
systems in the presence of phase noise.

Although there exist several contributions that analyze the
performance of RIS-assisted systems, most of them are based
on approximations. For instance, the CLT approximation is
frequently used but it is only accurate when the number of re-
flecting elements of the RIS is sufficiently large. Additionally,
to the best of the authors’ knowledge, no analytical studies
have been conducted to investigate the system performance of
RIS-assisted transmission by taking into account the interplay
between the amplitude and phase response of each reflecting
element of the RIS [23]. The above mentioned works, in par-
ticular, assume that the amplitude response of each reflecting
element is independent of the applied phase shift, which is
not always possible as discussed in [23] and [24]. In [24], in
particular, it is shown that the amplitude and phase responses
are, in general, intertwined and depend on the circuital model
of the tuning circuit that controls each reflecting element of
the RIS.

Motivated by these considerations, in this paper, we present
a detailed performance analysis of RIS-assisted single-input



single-output (SISO) systems over Rayleigh fading channel-
s, by taking into account the intertwinement between the
amplitude and phase response of the reflecting elements of
the RIS. In particular, exact closed-form expressions for the
OP and EC are derived by considering the amplitude and
phase model empirically derived in [23]. In addition, in order
to gain design insights, simplified expressions are obtained
in some asymptotic regimes. Furthermore, we characterize
the impact of key parameters on the system performance.
The obtained findings show that an increase of the transmit
SNR, the number of elements of the RIS as well as the
minimum reflecting amplitude help improve the performance.
It is shown, on the other hand, that the performance degrades
with an increase of the steepness of the amplitude response.
The main contributions of this paper can be summarized as
follows.

« We provide a new analytical framework on the per-
formance analysis of RIS-assisted systems. Considering
a practical model for the phase shift and amplitude
response, we derive exact closed-form expressions for the
OP and the EC.

o In order to get additional insights into the impact of
system parameters, we present asymptotic expressions for
the OP and EC under the assumption of large number
of reflecting elements. In addition, we derive upper and
lower bounds for the EC. The accuracy of the bounds
becomes tighter when the number of reflecting elements
of the RIS grows large.

« Capitalizing on the achieved analytical results, we an-
alyze the effects of the transmit SNR, the number of
elements of the RIS, the minimum reflecting amplitude
as well as the steepness of the amplitude response on the
RIS-assisted system performance.

The remainder of this paper is organized as follows. In
Section II, we introduce the system and channel models. In
section III, exact closed-form expressions for the OP and the
EC are obtained followed by the asymptotic expressions when
the number of reflecting elements of the RIS is sufficiently
large. Moreover, tight upper and lower bounds for the EC are
derived. In Section IV, some numerical and simulation results
are presented to confirm the accuracy of derived expressions.
Finally, Section V concludes the paper.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a SISO system in which
a single-antenna base station (BS) communicates with a single-
antenna user through an RIS that consists of N reflecting
elements. The incident signals are reflected by the RIS by
dynamically adjusting the phase shifts. We assume that the
direct link from the BS to the user is blocked due to the
presence of obstacles, such as buildings. In addition, we make
the assumption that full channel state information (CSI) is
available at the RIS in order to optimize the phase shifts. Also
we consider only the signal reflected by the RIS the first time
and ignore the signals reflected by the RIS two or more times.

We denote by h; 2 4;e=3%i (i =1,2,..., N) the baseband
equivalent fading channel between the BS and the i-th element

Fig. 1. RIS-assisted communication system.

of the RIS, and by g; £ Bie~I%i the fading channel between
the -th element of the RIS and the user. Furthermore, h; and
g; are assumed to be independent and identically distributed
(i.i.d.) complex Gaussian random variables (RVs) with zero
mean and 02 = 1/2 variance. Therefore, the magnitudes of h;
and g; (i.e., o; and 3;) follow the Rayleigh distribution and the
phases ¢; and 1); are uniformly distributed in [—7, 7). Hence,
the received signal y at the user can be expressed as

N
y=P (Z hz-vz-gi> T+, (1)

i=1

where P; is the transmit power at the BS, z is the transmit
signal with unit energy, and n is the zero-mean additive white
Gaussian noise (AWGN) whose variance is Ny. Additionally,
v 2 pi (#;) e7% is the reflection coefficient applied by the
i-th reconfigurable element of the RIS, where ¢; € [—7, )
denotes the induced phase shift and p; (¢;) € [0, 1] denotes the
induced amplitude which is dependent on the phase shift. In
general, the relation between the phase and amplitude applied
by the reconfigurable elements of the RIS depends on the
load or surface impedances as elaborated in [3] and [24]. In
this paper, we consider the closed-form empirical model that
was developed in [23]. According to [23], in particular, the
amplitude response p; (¢;) can be explicitly expressed, as a
function of the phase shift, as

A sin (¢; — ) + 1
602 (1 ) (TS

where Kpi, > 0 is the minimum amplitude, ¥ > 0 is the hor-
izontal distance between —m/2 and Kpin, which corresponds
to the difference between —7/2 and the phase shift ¢; that
minimizes sin (¢; — ) (i.e., when ¢; = —7/2 + 1), and & is
the steepness of the function curve. It is worth noting that (2)
yields an ideal phase shift model (i.e., p; (¢;) = 1) if Kpin = 1
or £ = 0. From (1) and (2), the instantaneous end-to-end SNR
at the user can be expressed as

3
> + Kmin (2)

N 2
v =1 aiBipi (@) PPV 3

i=1

where || denote the absolute value, 7, 2p, /Ny represents the
transmit SNR. By setting ¢; = ¢;+1¢; for ¢ = 1,..., N to



fully compensate the channel phases, (3) simplifies to

v = A%y, )

AN
where A = Y a;Bipi (pi + 0i).
=1

It is worth mentioning that the SNR in (4) is not necessarily
the maximum achievable SNR, since p(-) depends on the phase
shift [23]. The SNR in (4) provides information on the actual
SNR that is obtained by ignoring the interplay between the
phase and amplitude response of the reflecting elements of the
RIS at the design phase. The objective of the present paper
is, in fact, to assess the performance of RIS-assisted systems
under this considered mismatched design and to quantify the
impact of ignoring the interplay between the amplitude and
the phase response.

III. PERFORMANCE ANALYSIS

A. Outage Probability

Define Zzéai Bi, the probability density function (PDF) of
Z; is given by [25, Eq. (3)]

fz, (2) = 42K, (22), )
where K, (.) is the modified v-order Bessel function of
the second kind [26, Eq. (8.432)]. By utilizing [27, Eq.

(07.34.03.0605.01)], we can rewrite (5) in terms of the Mei-
jer’s G-function [26, Eq. (9.301)] as

l_l } ‘

22

(0t — 3
Define Riépi(%+¢i):(1—f€min) w +Hmin-
The PDF of R; for kpyin # 1 and € # 0 can be formulated
using the transformation method between two RVs as

fz. (2) = 2G5, [ZQ (6)

B e e
7€ (1= Kumin) \/(—1_‘“) - (—1_23;3>

where 7 € (Kmin, 1). If Kmin = 1 and/or £ = 0, then R; = 1
and the PDF of R; is independent of 4.

Corollary 1. The cumulative distribution function (CDF) of
the end-to-end SNR for an RIS-assisted system is given in (8) at
the bottom of this page, where H [-, ..., -] is the multivariable
Fox’s H-function [28, Eq. (A.1)]. In (8), in particular, we
define T 2 k mod 3 and have

T:1mk207nk:27pk:27qk:0,
(k) _

and ) = 0,7 = 1,60 0,0 = 1,2 = (LEzpm)’
7:2:mk:0nk—1,pk:1,%:1;

and c(k) =0, 'y(k) d(l) 5(1) = %,zk =1

7T=0: mk—Onk—lpk—l qk—O

and c(k)—O ’y(k)f zlg,zk:a 26

In particular, if j is even, ie., j can be expressed as j =
2w(w=1,2,...,N), we have a;=0, ozlg.?’w_l):—l, a;?’”):—l,
and a( ) = =0 for k # 3w—1,3w. Otherwise, if j is odd, i.e.,

_ (Bw— 2) (Bw) __ 1
j = 2w — 1, we have a; =1, aj; -2, a; = —36

for k # 3w — 2, 3w, a(k) = 0. Furthermore, if k mod 3 = 1,
we have b = 1 and ﬂ(k) = —2, for other k, ﬂ(k) = 0. Also,
bj=—1, 7Y = 1, %) = ~1 and g7 =0,

Proof: See Appendix A. [ ]
The multivariate Fox’s H-function in (8) can be calculated
by using widely used mathematical software tools, such as
Mathematica [29] and Matlab [30, Appendix C]. The Python
implementation of this function is provided in [31].
The OP is defined as the probability that the instantaneous
end-to-end SNR ~ falls below a given threshold v;y,. From (8),
the OP can be directly obtained by setting v = 71, as follows

Py = Pr (ZZH < *@f) =F, (yw). ()

=1

1) Large N Approximation : For a sufficiently large num-
ber of reflecting elements, i.e., N > 1, according to the
CLT, A converges to a Gaussian distributed RV. In this
case, a simplified expression of the OP can be obtained by
computing the mean and variance of A. To this end, we
note that the mean and variance of Z; are E(Z;) = 7/4 and
VAR (Z;) = (16 — 7%) /16 [5], respectively. Accordingly, we
provide the following corollary.

Corollary 2. The mean value ¢ and the variance § of R; are
given by

A l—l-cmm 11
= )= — 7 1
I3 E(RZ) T (f"’ 2 2) +/‘€m1n> ( 0)

§ 2 Var (R))

_(1—/<mm)2 11\ (lfmin) e/, 1 1
S () m(e5) - 0

where B (-, ) is the beta function defined in [26, Eq. (8.384)],
E (-) and Var (-) represent the statistical expectation and the
variance.

N
1 0,2N:m
_ 1,110 M, MV iTM3N ;N3N
F'Y (7) - (\/7_.(5 HQN N+1:p1,qi:...:Pk Gk - iP3N ;43N

ooy )
—2.0, 0)(bj; ﬁf),. BB ﬁ_§3N)) = (d“) 5“))

X
(0:—2,0,0,...,

(A BN) _(3N)
()

(d<3N> peciy - ®
» g

Z1ye » 3%k s+ <523

) 1,g3N+1



Proof: See Appendix B. [ ]
Since Z; and R; are independent of each other, the mean
and variance of A are, respectively, equal to

E (A) = Nme/4,
Var (A) = N (6 +£% (1 — 7°/16)) .

Therefore, A% can be approximated with a non-central chi-
square RV with one degree of freedom whose PDF is [8, Eq.

®]
1 _1 /
s (5) e SR p (VA g
22 \\ 22 2\ 2
where I, (.) is the modified Bessel function of the first
kind [26, Eq. (8406, A 2 (¥=)° and »’

N gé + &2 (1 — 71’—;)) From (4), therefore, the PDF of ~ can
be formulated as

-

faz () =

1
1 7)‘4 ( 7+>\%> (x/w\)
= — exp|— I 1 , (13
A0 2%772<%A P2 )4 \(n? (1
Finally, the OP can be obtained by using [32, Eq. (3)],
= [ fy (7)d~ and (9), as follows
VA v Yth
Py =1~ Q (14)
‘ ( N VA

where @, (+,-) is the Marcum Q@Q-function [32, Eq. (3)].
Equation (14) provides a more efficient approach than (9) to
calculate the OP when N — oco. Although (14) is obtained
under the assumption of large N, however, it is sufficiently
tight even for moderate values of IV in the low-SNR regime,
as it is shown in the numerical results.

B. Ergodic Capacity

In this subsection, we analyze the EC defined as

€= Elog; (1+7)) = [

Corollary 3. The ergodic capacity in (15) is given at the
bottom of the this page, where for j .v2N, the
parameters a;, oy are the same as in (8), while for other

J
values of j, we have

o0

logy (1+7) fy (v)dy.  (15)

(Bw2) (3N-1) (k)

—1, and for k # 3w — 2 we have Bl(\llﬁl = 0. In addition,
gk), ’yjk) d(k) and 5 are the same as in (8) but zy
(\/%/@mm) when k mod 3 =1. Also, for k=3N+1, we
0; 0(3N+1)

have many = 0,n3ns =1, pavn =1, @ava =
077(3N+1) —1,zp=s.

Proof: See Appendix C. ]

1) Bounds for the Ergodic Capacity: The exact expression
of the ergodic capacity in Corollary 3 is not simple enough to
gain engineering insights. Therefore, we introduce upper and
lower bounds according to Jensen’s inequality as follows

O™ 2logy(1H(E(1/)) ) <OSC™ 2 log, (1+E(7)) . (17)

Corollary 4. The ergodic capacity of the considered RIS-
assisted communication system is upper bounded by

N (N —1)72e?
E(7) = %N Sk

The lower bound for the ergodic capacity can be approximated
as

(6+e%) +n (18)

C"™ ~ log, {1 +1/E(7) + Var (v)/[E (7)]3} . (19
where
2 o miet
Var(y) =N~} [4w—(e2+5) ]+2N(N—1) N2 {((Hg )~ 556 ]

2.2 2
NV 1) (977 ve me (e +5)>
16
5
+N(N—1)(N—2)7t2< (Z + ”6 ) (20)
4
wé (1_";1‘11111) @5_'_; ;) 4:‘im1n 1— K/mm B<3€—|—— _)

1—Kmin 11\ 4 (1=K min 11
| 6K mln( K ) (25 - _) ’V':mln —K B(f - _>+K§1in7
™

2’2
A 3w2 (1 — nmm) 11 5
I/——ﬂ_ <£+2 2)+’imin
(1—/<,min)3 11 3(1—mmin)%mm 11
+ SB35, D)+ . B(2+3, 5

Proof: See Appendix D.

|
a2N+1:17a2N+1 =2« e DN} =1; for k# 3(")_2042N—&-1_0 A
asna=0, aé?;vwz)_lv g?;\ffjir;)_—l,for k# 3w—2,a§£),+2_0 When ¢ ils fixed, we rewritle (10) as € = f(Kmin) =
3w—2 3N+ r(§+3 Pé+s :
aoni5=0,00 D=1l _ 1 for ket 302,008, =0 (1 _ %1%% Fonin + Sl using [26, Eq. (8.384.1)).
Furthermore, for j=1,...,N, b; and Bj(k) are the same as in Differentiating  f (Kmin) Wilfl(l5 r]tE)SPect t0  Kmin, We ob-
. +3
(8), for j=N+1, we have by =—1 ﬁ[\?_fl_Q)—l Bf{?ﬁﬂ) = tain f (Fun) = 1 — \/EF(E-Qi-l)‘ Then, let us define
_ 1 1 0,2N+3:m1,n1:. . iM g, Nk X M3N+1,M3N+1
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’ 2 Zlye v 9%k oy L3N -
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A T(e+3)

f© T Its derivative can be expressed as
1§ = %WJ (E+ 1) —(€+1)), where ()

is the psi function [26, Eq. (8.360.1)]. Employing [26,
Eq. (8363.3)], v ({+4%) — ¥ (§+1) can be written

1 1 :
as kX_:O (m - 5+%—+k)’ from which we conclude that

£ (€) < 0 always holds. As such, we obtain f (£) < f(0) =
1 and f' (Kmin) > 0, ie., € increases monotonically for
Kmin € (0,1) when ¢ is a constant. Similarly, it can be
proved that ¢ increases when ki, increases and & is fixed.
In addition, when K, remains unchanged, both ¢ and ¢
decreases as £ increases. As a result, it can be observed form
(18) that the upper bound of the EC increases as N increases.
Furthermore, increasing sy, or decreasing & with the other
parameters being fixed, which corresponds to an increase of
the reflection amplitude, further increases the upper bound of
the EC. Moreover, it can be proved that the lower bound of
the EC is improved when ki, increases or £ decreases.
2) Large N Approximation:

Corollary 5. For a large number of the reflecting elements,
the EC can be approximated as

Br 73 4 A
“ =3 me (5) oo (3)

(l711) (171) (171)7(11) A 2
LNt ooz e e
Proof: See Appendix E. ]

It should be noted that although (21) is obtained under the
assumption of large N, the asymptotic result provides a good
tightness even for moderate values of N, as substantiated by
the numerical results.

IV. NUMERICAL RESULTS

In this section, Monte Carlo simulations are presented to
verify the analytical expressions obtained in the previous
section. The outage threshold ~;, in Fig. 2 is set equal to
10 dB.

In Fig. 2, the OP of the considered RIS-assisted systems is
shown for different values of IV and k,,;,. It can be observed
from this figure that the analytical results match perfectly
with the simulated results, which proves the accuracy of the
analysis. Moreover, as expected, the system performance can
be improved by increasing N. Furthermore, the larger k,,;,
is, the smaller the OP. We can also observe that the system
performance improves as the SNR increases. In addition, we
observe that the CLT approximation is accurate even for
moderate value of IV in the low SNR regime.

Figure 3 illustrates the tightness of the upper and lower
bounds of the EC. We observe that the performance gap
between the upper and lower bounds and Monte Carlo sim-
ulations decreases as the number of reflecting elements N
increases, which confirms the tightness of (18) and (19).
Additionally, we can observe that the EC increases as the SNR
v increases when N is fixed. For example, if N = 32, setting
the SNR to v, = 20 dB results in 69.5% of improvement of

10°
1071
10 2
E
S 10°?
~
L
o0
<
=10
o
107°L| o Simulation ¥
Fonin=0.5 y
— = —Ffmin = 0.8 \
10 6 | | -——-Large N Approximation \\ 4
16 18 20 22 24 26 28 30
Transmit SNR (dBm)
Fig. 2. Outage probability versus ~y; for different N and Kp,in (§ = 1.5).
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o

0 I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Transmit SNR (dB)

Fig. 3. Upper and lower bounds for the ergodic capacity versus v¢ (Kmin =
0.2, £ = 1.5).

the upper bound compared to y; = 15 dB. Also, if SNR = 15
dB, the upper bound of the EC increases of about 18.4% as
N increases from 16 to 32.

Figure 4 shows the impact of different system parameters
on the EC performance. It is observed that the EC increases
by increasing the minimum amplitude kni,. In addition, it
can be observed that the larger the value of &, the smaller the
EC is. When ¢ increases, in fact, the amplitude p; decreases
for a given phase shift ¢; [23]. Furthermore, we can observe
that the effect of k,,;;, on the system performance is less
significant when & increases. We can also observe that the
CLT approximation is accurate even for a moderate number
of elements such as N = 32.

V. CONCLUSION

In this paper, we have studied the performance of an
RIS-assisted SISO system under Rayleigh fading channels.
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Considering a practical phase shift model, we derived exact
closed-form expressions for the outage probability and the
ergodic capacity. Furthermore, upper and lower bounds for
the ergodic capacity were derived, whose accuracy increases
with the number of elements of the RIS. Moreover, simplified
expressions were obtained under the assumption of a large
number of reflecting elements. Our analysis reveals that the
system performance improves with the SNR, the number of
reflecting elements, the minimum values of the reflection
amplitude and a decrease of the steepness of the amplitude
function.

APPENDIX A
PROOF OF COROLLARY 1

We first consider the PDF of M; 2 Z;R; by using the
integral fus, (m) = [;° f (2, ) £dz which is given by

2 ]nl]] 1 2 0 2 -
fau, (m) € (1 - Kmin) /m Z 02 [ %’% :|

(g—nmmf/ﬁ—l
x L min dz. (A1)
2 —Kmin 1/5 Z —Kmin 2/6
( 1—FKmin ) - ( 1—Kmin )
m_ . \1/§
Substituting (i_h,’“f‘“ with u and applying [26, Eq.

(9.31.5)] with some algebraic manipulations, we obtain

1—k. g )2
Gg (( hmm)u +Hm1n) ’0,_0 du

m2

o=

(A2)

Using the definition of the Meijer’s G-function [26, Eq.
(9.301)], we write (A.2) as

RKmin 251
fm(m):% I‘(1+31)F(1+51)( - ) ds
Ly
- 1+ auf]*a (A3)
—_— u )
0o Vuvl—u ’

Iy

A 1w . .
where a = 1}»’“& and £; denotes the path of the integration.
By employing the integration by parts method, I; can be
expressed as

1
1
n—z
o V1

—Uu

9* dy/u.

Substituting /u with ¢, we arrive at the following result

1
I =2/ (1—12) 72 (14 at) ™ dt.
0

(1+au (A.4)

(AS)

_1
Utilizing the Mellin transform of (1 —¢?)" * [33], we obtain

ERVENCIING )
oni) T (E)
r 2

1
= 2/ 752 (1+ at®) ™" dt.  (A.6)
0

2

With the help of [33], (1 + 611525)251 can be expressed as

L/a_%} F( )F( 281 — 25)t‘53d33, (A7)

1+at?)™
(1+at™) 2rif 2¢ ['(—2s9)

where 0 < Re (s3) < —4&Re (s1). Plugging (A.7) and (A.6)
into (A.3), we obtain

. (A8)

Based on [34], we compute the moment generating function
(MGF) of M, defined as E(e™*™) with the help of [26,
Eq. (3.326.2)]. Since the RVs ]\[ are independent we can

obtain the MGF of the sum A2 ZM as fa(s)= HfM ().

Then the CDF F4 (z) can be obtalned using the inverse
Laplace transform of f4 (s) / s. From (4) with some algebraic



manipulations, we arrive at Employing [27, Eq. (07.34.03.0456.01)], we can express I
as

1\N/ 1 \3N N
F,(v)=|— — T 92,8301, N N
() (ﬁf) (271_2.) / /nl:[l (53n—2;53n—1, S3n) e =S Sam_2a—> S3m_s
B fvSN Iy= 2/, Goslv| At dy. (C.4)
= \2X szma2 _ 1%, = 83m-2,—2_ S3m-2—1
« ‘:\l] <ﬁ/‘”m1n) m=1 a 25;:1‘37"(151- . .dS3N, =1 =1
F(l—Zi 53m—2) el With the help of [26, Eq. (9.301)] and the Laplace transform
=l of the Meijer’s G-function [27, Eq. (07.34.22.0003.01)], we
A obtain
where we define T (S3n—2, S3n—1, S3n) = N N
F2(1+83n Q)F( 3" I)F(Sggl )F( 253n 2*7)1—‘(1 $3n—1— s?n) ZSS'm—27 ZSSm 2 1 1 07_293m—27_293m—2
r m)r‘@ $3n—1—53n) L G2 2N ! :gGé,g 3 Nm:1 Nm:1
Finally, the proof is completed using the definition of —Zng_Q, 253771—2 1 —> 83m—2,—p S3m-—2—1
=1 m=1

multivariable Fox’s H-function. N
(> sam—2 +33N+1>F(1 — 53N+1)F2<1 +> S3m—2— 53N+;

:1 / (m 1 m=1
S

APPENDIX B Lomin: F<2

PROOF OF COROLLARY 2

N
+ > s3m—2 — 33N+1)

m=1
X 853N+]d831\7+1.
We can derive the mean of the RV R; by using E (R;) = ) o
[ 7 fa, (r)dr and (7). which yields By defining £ (p(z )) = P (s) and utilizing the final val-
ue theorem  lim Jap( dz) = hm sL (fo dz) =

1/6-1
_R ) lim s 28— hm P we can rewrlte the ergodic capacity as
E(R)= 1 fimin dr. (B.1) ss0t ® (s): g pactty
1 Kmln Kmin 1/5 2/5
\/ () () 11\ 1\
mm i C= V(530 _
25 1n2<\/_§> <2m) / / H om2 8311, 83n)
Substituting (m) with £, we can rewrite (B.1) as L1 Loy
1 . 1 F(_ZSBm—2+33N+1)P(1_33N+1)F2 (1 +> 33m—2—83N+1>
2) = — — . . —_— m=1 m=1
e O = " N X
Tepo 1 . o F<—2233m—2>r<2+ > S3m—2—S3N+1)
_ mln/ tg_f(l—t)_adtﬁ- mln/ t_f( ) th (B 2) m=1 m=1
T Jo ™ Jo

N
22 S3m—2 —5e > S3m
Then we can obtain (10) with the aid of [26, Eq. (3.191.3)]. % (V7fmin) "= a ST sNtI gy dsang,

In order to obtain the variance of R;, we first derive E (R?)

- oo where s is a number close to zero.
following the same approach as for the derivation of (10)

Using the definition of the multivariable Fox’s H -function, we

e )2 btain (16) to conclude the proof.
2 (1 — Kmin) 11 o p
E(R}) = ~——"""B (2§+55
b2 2min (1 — /fmin) (f " 1 l) . (B3) APPENDIX D
™ 272 PROOF OF COROLLARY 4

Using Var (R;) = E(R}) — (E(R;))*, we obtain (11) to By using (4) and (17), we can rewrite (15) as
complete the proof.

N 2
APPENDIX C C <O = logy, |14+ E (Z ozzﬂz-RZ) Ve . (D.D
PROOF OF COROLLARY 3 i

The PDF of « can be obtained by taking the derivative of Is
(8) and then inserting it into (15). Thus, we obtain the ergodic  The integral /5 can be decomposed as
capacity as

N N—-1 N
22 ssma Ig=7E (a;BiR; +2 a;Bi RiarBr Rl . (D.2)
(\/— (271_) /HT 5311—275371—175311)( Kmm)W ; ;kzl;-l
N Applying (10) and (11) into (D.2), we obtain

a—zilém2:183m o0 _ E Sdm 2_1 N
xN—dsl...ng,N/ log, (147) (7) = . . VY .
r(_QZSS,,L_2> 0 z;(azﬁz ) (5+2%) (D.3)

m=1 Iz i=




N-1 N
N (N —1) 7%
Z Z ;B Rio, B Ry, =¥-

2
i=1 k=i+1 3

Thus, by substituting (D.2), (D.3) and (D.4) into (D.1), we
obtain E () and the upper bound for the ergodic capacity is
derived as in (18).

Next, according to [35], we apply the Taylor series expansion
of 1/~ around E () and obtain

E (1/7) = 1/E (7) + Var (7)/[E (7)]".

The variance Var () can be obtained as follows. From (4),
we can write

(D4)

D.5)

N N-1 N
Var()=Var( Y "(aifiRi)*+2> > i Ricu i Ri
i=1 i=lk=i+1
N N N-1 N
Using Var(ZX> = ZVar (Xi)+2> > Cov (X, Xy),
i=1 =1 i=lk=i+1
Var (X; E (X ,) Z)IE(XZ-), Cov (X;, Xi) =
E (X, Xk) E(X;)E (X3) and]E — [ " fx (2)dx, the

variance of 7y can be expressed as 1n (20), which completes
the proof.
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PROOF OF COROLLARY 5

The ergodic capacity can be written as

oo

= — In (1 ' E.1
3 n(1+7)fy(y)d (E.1)
Substituting (13) into (E.1), we obtain
B LY (A
o2\ ) TP\ T2
e Y \/_ _;
x| In(l+ exp(— )I_ 1dy. (E.2)
T e L ) B
With the aid of [27, Eq. (07.34.26.0008.01)] and [26, Eq.
(9.31.5)], we can rewrite I_% \‘/ﬁﬁQ in terms of the Fox’s

H-function as
Ay (l, 1

VA ) 1 o( g >
I 1| — |=rH 5| — 4 . (E3)
2<ﬁn2 Pyt (=11).(5:1).(5, 1)
Furthermore, by employing [27, Eq. (07.34.03.0228.01)], [27,
Eq. (07.34.03.0456.01)] and [27, Eq. (07.34.26.0008.01)], the

logarithm function and the exponential function can be written
in terms of the Fox’s H-function as

1)

1) ) , (E.4)

1,1),(1,
In (1 +1 :H1’2( (L),
D =me 0] ).
gl ,0 Yy -
exp | — = H .
p( 2%772> ! (27 7| (0,1) )
Substituting (E.3), (E.4) and (E.5) into (E.2) and utilizing

the definition of multivariable Fox’s H-function, the proof is
complete and (21) is proved.

(E.5)
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